東北大学大学院情報科学研究科<u>博士課程前期</u>·入学試験問題 (2020 年 2 月 1 日) 専門試験科目群第 7·社会科学群

- 問題 **E-1** 2種類の財 x,y からなる効用関数 $U(x,y)=x^{\alpha}+y^{\alpha}$ を考える。ただし、 $x\in\{0,1\}$ は 0 または 1 のいずれかの値のみをとる変数であり、他方 $y\geq 0$ は連続な値をとる。また $\alpha\in(0,1)$ はパラメータである。以下の問いに答えなさい。
- (1)経済全体に 2 種類の家計(タイプ H, L)が存在し、それぞれの人口を n_H, n_L とする。 2 種類の家計は同一の効用関数 U(x,y) と異なる所得水準 $y_H>y_L>1$ を持つ。この経済全体における x の需要関数 D(p) を求め、需要曲線の図を描きなさい。ただし、x の価格は p で表し、y の価格は 1 に固定する。
- (2)財 x は独占企業によって単位費用 1 で供給されているとする。 $\alpha=0.5, y_H=4, y_L=2, n_H=n_L=1$ が与えられたとき、独占企業が設定する価格を求めなさい。

[English] Consider a utility function $U(x,y) = x^{\alpha} + y^{\alpha}$ of two consumption goods x and y, where $x \in \{0,1\}$ can only take either 1 or 0 while $y \geq 0$ can take a continuous value. $\alpha \in (0,1)$ is a parameter. Answer the following questions.

- (1) There are two types of households (called types H and L) whose population is n_H and n_L . Those households have the same utility function U(x,y) but different income levels $y_H > y_L > 1$. Derive demand function D(p) for x in the entire market, and draw a figure showing the demand curve, where p is the price of x, and the price of y is fixed to 1.
- (2) Now good x is provided by a monopolistic firm in unit cost 1. Derive the profit-maximizing price of the monopolistic firm when $\alpha = 0.5, y_H = 4, y_L = 2, n_H = n_L = 1$.

東北大学大学院情報科学研究科<u>博士課程前期</u>·入学試験問題 (2020 年 2 月 1 日) 専門試験科目群第 7·社会科学群

問題 \mathbf{E} -2 企業 i=1,2 が同質財を供給し、利潤最大化を目的として価格と立地点を選択する問題を考える。l 人の消費者は区間 [0,l] 上に一様に分布しており、2 社のうち 1 社から "財 1 単位だけを必ず購入する"とする。距離 d の輸送に必要な輸送費 d^2 は消費者が負担する。各企業の生産費用をゼロとすると、企業 i の価格 p_i と需要 q_i より得られる利潤は p_iq_i となる。

- (1) 各企業の立地点 x_1, x_2 (ただし、 $0 \le x_1 \le x_2 \le l$) が与えられたときの、各企業の均衡価格 p_1^* と p_2^* を求めなさい。
 - (2) 各企業が立地を先に選択する 2 段階競争の下で、均衡立地 $x_1^*,\,x_2^*$ を求めなさい。

[English]

Two firms providing a homogeneous good maximize their profits by choosing their optimal locations and prices. l consumers are evenly dispersed along [0, l]. Each consumer chooses only one unit of the good from either firm 1 or firm 2. Transport cost d^2 for distance d is paid by consumers. Assume that the production costs are zero so that the profit of firm i is p_iq_i if its price is p_i and its demand is q_i .

- (1) Given locations x_1 and x_2 (where $0 \le x_1 \le x_2 \le l$), find the equilibrium prices p_1^* and p_2^* .
- (2) Assume that firms have a two-stage competition in which they choose locations first. Find the equilibrium locations x_1^* and x_2^* .

東北大学大学院情報科学研究科<u>博士課程前期</u>·入学試験問題 (2020 年 2 月 1 日) 専門試験科目群第 7·社会科学群

- 問題 E-3 (1) 地域間所得格差の収束に関する β convergence と σ convergence について、両者の違いが分かるように説明しなさい。
- (2) 「トービンの q」の定義について示し、それが株式市場の分析にどのように役立つかを説明しなさい。
- [English] (1) Explain β convergence and σ convergence in inter-regional income inequality. Point out their differences clearly.
- (2) Give the definition of "Tobin's q", and explain how it is useful in the analysis of stock markets.

東北大学大学院情報科学研究科<u>博士課程前期</u>·入学試験問題 (2020 年 2 月 1 日) 専門試験科目群第 7·社会科学群

問題 $\mathbf{E}-\mathbf{4}$ (1) $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}dx$ (ただし、<math>s>0) に関して、以下の問いに答えなさい。 (i) $\Gamma(s+1)=s\Gamma(s)$ を示しなさい。 (ii) $\Gamma(1)=1$ および $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ を示しなさい。 (iii) 自然数 n に対して、 $\Gamma(n+1)=n!$ および $\Gamma\left(n+\frac{1}{2}\right)=\frac{(2n-1)!!}{2^n}\sqrt{\pi}$ を示しなさい。 ここで、

$$n!! = \begin{cases} n(n-2)(n-4)\cdots 4\cdot 2 & n$$
 が偶数
$$n(n-2)(n-4)\cdots 3\cdot 1 & n$$
 が奇数.

(2) n 次正方行列 $A=(a_{ij})$ のトレース $\operatorname{tr}(A)=\sum_{i=1}^n a_{ii}$ に関して、以下の問いに答えなさい。(i) n 次正方行列 $X,\ Y,\ Z$ に対して、 $\operatorname{tr}(XY)=\operatorname{tr}(YX)$ および $\operatorname{tr}(XYZ)=\operatorname{tr}(ZXY)=\operatorname{tr}(YZX)$ を示しなさい。(ii) $\operatorname{tr}(C^TB^TABC)$ を計算しなさい。ただし、

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 2 & 7 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

[English] (1) Answer the following questions regarding $\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$, where s > 0. (i) Show $\Gamma(s+1) = s\Gamma(s)$. (ii) Show $\Gamma(1) = 1$ and $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. (iii) Show $\Gamma(n+1) = n!$ and $\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$ for natural number n, where

$$n!! = \begin{cases} n(n-2)(n-4)\cdots 4\cdot 2 & \text{if } n \text{ is even} \\ n(n-2)(n-4)\cdots 3\cdot 1 & \text{if } n \text{ is odd.} \end{cases}$$

(2) Answer the following questions related to trace $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$, where $A = (a_{ij})$ is a square matrix of order n. (i) Show $\operatorname{tr}(XY) = \operatorname{tr}(YX)$ and $\operatorname{tr}(XYZ) = \operatorname{tr}(ZXY) = \operatorname{tr}(YZX)$ for square matrices of order n, X, Y, Z. (ii) Calculate $\operatorname{tr}(C^TB^TABC)$ with

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 2 & 7 & 8 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad C = \begin{pmatrix} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

東北大学大学院情報科学研究科<u>博士課程前期</u>·入学試験問題 (2020 年 2 月 1 日) 専門試験科目群第 7·社会科学群

(2) あるコインを投げたときに表が出る確率を p とする。(i) このコインを N 回投げた時に n 回表が出る確率を求めなさい。(ii) $p=1/2,\ N=10,\ n=8$ の時にこの確率を計算し、小数点以下第 3 位まで求めなさい。(iii) あるコインを 10 回投げた時に、8 回表が出たという。このとき、このコインは公平かどうか議論しなさい。

[English] (1) Consider a linear regression model $Y=a+bX+\varepsilon$, where X_i and Y_i ($i=1,2,\cdots,n$) are respectively the sample values of independent variable X and dependent variable $Y, \bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and $\bar{Y}=\frac{1}{n}\sum_{i=1}^n Y_i$ are their sample means, $S_X^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2$ and $S_{XY}=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})$ are respectively the sample variance of X and the sample covariance between X and Y, ε is the disturbance which is uncorrelated between samples with mean $E[\varepsilon]=0$ and variance $Var[\varepsilon]=\sigma^2$. Also, $E[X\varepsilon]=0$ holds. (i) Show that the ordinary least squares estimators of a and b are $\hat{a}=\bar{Y}-\hat{b}\bar{X}=\bar{Y}-\frac{S_{XY}}{S_X^2}\bar{X}$ and $\hat{b}=\frac{S_{XY}}{S_X^2}$, respectively. (ii) Show that \hat{b} is the unbiased estimator of b, i.e. $E[\hat{b}]=b$ holds.

(2) Let p be the probability to get the head when one flips a coin. (i) Calculate the probability to get the head n times when one flips this coin N times. (ii) Calculate this probability for p = 1/2, N = 10, n = 8 and round off to third decimal places. (iii) Discuss the fairness of this coin if someone gets the head 8 times when flipping the coin 10 times.